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Abstract

The effects of inertia, diffusion and thermophoresis on aerosol particle deposition from a stagnation point flow onto an axisymmetric
wavy wafer are examined by the coordinate transformation and the cubic spline approximation. The numerical result reveals that the
deposition effect is greatly controlled by the geometric shapes of the deposition surface and has a frequency similar to that of surface
geometry. When diffusion and thermophoretic effects are the dominant deposition mechanism, the deposition effect affected by the dis-
placement of the concaves and convexes on the deposition surface becomes obvious with the increase of radius, while the general mean
deposition effect remains slightly less than that of flat wafer.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

While a flow containing aerosol particles is passing
through the surface of an object, the particles carried by
the flow will cling to the surface under the interaction of
Brown diffusion, gravity deposition, inertia effects as well
as outside forces (for example: thermophoretic effect and
electromagnetic effect). Relevant researches are playing
an increasingly important role in engineering application
and quality control of clean rooms. Review of past
researches suggests that when the particles are very small,
their adhesive rate is governed by diffusion and thermoph-
oretic phenomena (for relevant researches, please refer to
[1–4]). The so-called thermophoresis phenomenon refers
to the behavior that particles float to colder area of the flow
field under the push of heat arising from temperature gra-
dient of the flow field. If analyzed by order of magnitude,
this phenomenon can be obviously seen among particles
of 0.1–1 lm in diameter. With the increase of diameter,
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the inertia of the particles is growing, making the particles
more easily to stray the flowing route of the flow, thus the
inertia effect gradually replaces diffusion and thermopho-
retic effects to become the dominant deposition mecha-
nism. For relevant researches, please refer to [5–7].

As far as I know, no research about particle deposition
effect of an irregular deposition surface was conducted.
Whereas, in the actual industrial application, numerous
tiny irregular surfaces are inevitably created during the
manufacture and mechanic components or electronic cir-
cuits are often deliberately installed on the deposition sur-
face. Therefore, it is necessary to further study the physical
deposition phenomenon of an irregular surface. This essay
focuses on the research of axisymmetric stagnant flow on
deposition surface of a tinily wavy wafer under the interac-
tion of coupling diffusion, thermophoretic and inertia
effects, clarifies the displacement of the concaves and
convexes on the deposition surface will forcibly change
the moving direction of the flow, affect diffusion and inertia
effects and influence the temperature gradient thus change
particle thermophoretic phenomenon. The analytical
method adopts the concept of Wang and Chen [8], starting
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Nomenclature

a amplitude of the wavy surface
D diffusion constant
dp particle diameter
f dimensionless streamfunction
g gravitational acceleration
L wavelength
N particle concentration
p pressure
Pr Prandtl number
Re Reynolds number
S surface geometry function
Sc Schmidt number
T temperature
u1 r component of the velocity of the inviscid flow,

evaluated at the wavy surface
u, w r and z velocity components, respectively
Vd local particle deposition velocity
Vd,m mean particle deposition velocity

Greek symbols

a thermal diffusivity
h dimensionless temperature
m kinematic viscosity
r notation
k stagnation-point flow strength
q density
n, g coordinate
w streamfunction

Superscript

– dimensional quantity

Subscripts

w surface conditions
1 conditions far away from the surface
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with the full Navier–Stokes equations and the concentra-
tion equation of coupling diffusion, inertia and thermopho-
retic effects, converting the complex boundary surface into a
plane coordinate system through a simple conversion of
coordinate, and calculating boundary layer equation arising
from semi-similarity conversion by cubic spline approxima-
tion. One thing that needs to be addressed is that the deduc-
tion in this article proceeds from stream function� s point of
view, which not only simplifies the complicated mathematic
deduction but also gets equations simpler Wang and Chen
[8]�s. Apart from the research on the relations between
deposition effect and plane geometry, the article in the
end specially discusses whether the mean deposition effect
of wavy wafer is greater than that of flat wafer.
L
r

)/(sin)( 2 LrarS = π

Fig. 1. Physical model and coordinates diagram.
2. Governing equation

As shown in Fig. 1, consider an incompressible Newtonian
fluid of which the concentration of aerosol particles is N1,
passing through an geometrically symmetric irregular wafer
of constant temperature Tw at a uniform velocity w1 and
assume (a) it is a two-dimensional, axisymmetric and steady
flow, (b) viscosity dissipation and buoyancy effect are
ignored, (c) the particle concentration is very low and that
on wall surface is zero, (d) when particles contact the wall
surface, they will be absorbed by it and none will be bounced
back. Under the above assumption, the mass, momentum,
energy and particle concentration equations become
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. The boundary conditions at the

surface z ¼ SðxÞ are

T ¼ T w; u ¼ w ¼ N ¼ 0 ð6Þ
Whilst we have, on the upper surface

T ¼ T1; N ¼ N1; u ¼ u1ðrÞ; p ¼ p1ðrÞ ð7Þ
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where T and N are flow temperature and particle concen-
tration, respectively; u and w are air flow velocities in the
r- and z-direction, respectively. While, u1 can be consid-
ered as the velocity of inviscid fluid in r direction outside
the boundary layer. wg is the terminal sedimentation veloc-
ity that can be obtained by equating the Stokes drag to the
gravitational force (Ye et al. [4] and Tsai and Liang [7])

wg ¼ �
qpd

2
pC

18lg

g ð8Þ

where lg is the air viscosity and C is the Stokes–Cunning-
ham correction factor; ut and wt represent the particle ther-
mophoretic velocities in directions along and perpendicular
to radius that arise from temperature changes. Because the
aerosol system is a system in which solid particles or liquid
droplets form dispersed phase that floats in gaseous contin-
uous phase. In an environment with unevenly distributed
temperature, the aerosol particles will be driven by temper-
ature gradient from a location with higher temperature to
one with lower temperature. This kind of motion is called
thermophoretic motion. According to the research by Tal-
bot et al. [1], its mathematic expressions are as follows:

ut ¼ � ktm
T

oT
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ð9Þ

wt ¼ � ktm
T
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oz
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where ktm is thermophoretic diffusivity, whilst kt is ther-
mophoretic coefficient that can be expressed as

kt ¼
2Csðkg=kp þ CtKnÞC

ð1þ 3CmKnÞð1þ 2kg=kp þ 2CtKnÞ
ð11Þ

where Kn ¼ 2k
dp

is Knudsen number that is the ratio of the
mean free path of gas molecule to particle diameter, kg
and kp represent the thermal conductivity coefficients of
the gas and the aerosol particle respectively, Constant
Cs = 1.147, Ct = 2.20 and Cm = 1.146 come from the re-
sults of the experiment (Shen [3]), C is an experimental con-
stant that can be expressed as follows according to the
suggestions put forward by Batchelor and Shen [2]

C ¼ 1þ Knð1:2þ 0:41e�0:88=KnÞ ð12Þ
In Eq. (11), although different particle has different size, its
parameter kt can range from 0.2 to 1.2, the kt usually can
be considered 0.5 when the particle diameter is less than
1.0 lm.

In order to make analysis possible, we first define veloc-
ity component and stream function wðr; zÞ as

u ¼ ow
oz

; w ¼ � ow
or

� w
r

ð13Þ

to automatically meet mass conservation equation, thus
no longer need Eq. (1). Secondly, out of analytical purpose,
we define the following coordinate conversion:
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� � ffiffiffiffiffiffiffiffiffiffiffiffiffi
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and relevant dimensionless variables
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where I is the thermophoretic coefficient, U0 = kL is the
reference velocity, k is the stagnation-point flow strength
and can be estimated using the matching flow near the stag-
nation point with the viscous flow model. In the article, it
can be approximated as (Cooper et. al [9])

k ¼ 2w1

pR
ð16Þ

where R is the radius of the wafer.
The coordinate conversion in Eq. (14) adopts the theory

of adjusting coordinate via the profile of irregular solid sur-
face and converting irregular boundary into regular one. In
addition, according to the traditional analysis on flow onto
a wafer, the boundary thickness is proportionate to 1/2
power of the coordinate value in radial direction. For this
reason, the whole coordinate system in Eq. (14) is stretched
towards g direction. Noticeably, the above coordinate con-
version is started with full Navier–Stokes equations and
concentration equation, so, if the amplitude of the wavy
surface stays at zero, the equation will resume to be the
boundary layer equation for flat plate flow. In this way,
by putting Eqs. (14) and (15) into Eqs. (2)–(5), we get
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Fig. 2. Axial distribution of u1.
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where 0 and n are partial derivatives o
og and

o
on, respectively;

r = 1 + S
02, while the eight operators P1 � P8 are the set

of terms with coefficient Re�1/2 or Re�1. As the terms are
considerably complex and will be rounded down in the
later deduction, they are not listed here.

From Eq. (17), we can see the pressure gradient p 0 in g
direction is O(Re�1/2), indicating the pressure gradient in
n direction can be obtained from the inviscid fluid outside
the boundary layer, as shown below

pn ¼ � ru1u01 þ S0S00u21
� �

ð21Þ
When Reynolds number is too big (i.e. the boundary layer
theory is applicable), after removing p 0 from Eqs. (17) and
(18) and rounding down P1 � P8, by order magnitude
analysis, we obtain the following boundary layer
equations:
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together with the boundary conditions,

h ¼ 1; f ¼ N ¼ 0; f 0 ¼ 0 at g ¼ 0 ð25Þ
h ¼ 0; f 0 ¼ N ¼ 1 as g ! 1 ð26Þ

To solve the preceding equations, we have to know the
distribution of speed u1 outside the boundary layer in n
direction. In this article, we compute the flow field outside
the boundary layer through coordinate conversion and by
SOR method, of which the stream function equation and
coordinate conversion equation are
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put Eq. (28) into Eq. (27), we obtain the following stream
function equation and the expression of u1:
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The result is shown in Fig. 2, from which we can see the
impact of wavy surface on flow field is: the speed of a flow is
accelerated on an ascending wavy surface (from wave
trough to wave crest with slope S 0 being positive) and decel-
erated on a descending wavy surface (from wave crest to
wave trough with slope S 0 being negative). u1 has a same
periodical distribution as wavy surface. One thing deserving
attention is the variation amplitude of speed u1 is in direct
proportion to the amplitude of surface waveform and
becomes more obvious with the increase of radius.

Since the governing equation for a flow has been estab-
lished, in order to research into deposition effect, we define
local deposition velocity, which due to varied along the
wavy surface, of the system as

V d ¼
J
N1

ð31Þ

where J is particle flux per unit area of wavy surface, which
general expression is
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where oN
on is the concentration gradient on vertical wall, V , V t

and V g are flow velocity, thermophoretic velocity and termi-
nal sedimentation velocity on vertical wall, respectively. Put
Eq. (32) into Eq. (31), as the particle concentration on the
wall is zero, we get the following simplified equation:
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Additionally, we define mean deposition velocity as

V d;m ¼ JmðxÞ
N1

ð34Þ

where the mean particle flux Jm is the aggregate value of
particle flux integrated along deposition surface and di-
vided by the vertical projected area as shown in the follow-
ing mathematical expression:
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Put Eq. (35) into Eq. (34), we get the following integral
relation:
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Fig. 3. A comparison of deposition velocity for flat wafer between
numerical results from present work and experimental data from Ye et al.
[4] with different temperature.
3. Numerical method

According to the numerical method adopted in this arti-
cle, all the differential terms in g direction are dealt by cubic
spline approximation, while all the differential terms in n are
discretized by four-point backward differenced method. As
cubic spline approximation can discretize the governing
equation into the algebraic expression only containing func-
tions or the algebraic expression of the first or second deriv-
ative that are continuous in all computation areas, we firstly
change Eqs. (22)–(24) into the following standard expression
with the concept of virtual time (Wang and Kahawita [10]):
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i;j ¼ F i;j ð37Þ

where function g represents f 0 or h or N. In Eq. (37), the
method of order reduction is used to first get the values
f 0nþ1
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i;j and f 000nþ1
i;j on grid points, after that, according

to the theory of cubic spline, any function g(y) at any point
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where Dyj = yj � yj�1 is grid space. Therefore, in Eqs. (22)–
(24), the functional value of grid point f can be accurately
solved with the following equation:
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In Eqs. (33) and (34), the values of coefficients, such as Fi,j,
Gi,j and Si,j, can be determined by the solutions obtained in
previous time. In addition, as the value of Schmidt number
for aerosol particle is much bigger than the value of Prandtl
number, taking the particle of 0.01 lm–10 lm in diameter
for example: the value of Schmidt number may ranges from
300 to 105, the particle concentration boundary layer is
much smaller than velocity and temperature boundary lay-
ers. What is more, when the temperature of wall surface is
as low as that of cold wall surface (DT < 0), the thermoph-
oretic effect will change sharply in concentration very near
the wall, though the effect of thermophoresis was signifi-
cant throughout the thermal boundary layer. Therefore,
the collocation of grid points for concentration equation
is different from those for velocity and temperature equa-
tions. The former has to set more points in area very near
wall surface where the temperature, temperature gradient
and velocity can be computed with Eq. (38), thus avoiding
error caused by traditional difference method.

4. Results and discussion

In order to know the character of particle deposition to
irregular surface, the article uses regular wavy curved sur-
face to study the impact of concave and convex geometrical
shapes of deposition surface on particle deposition. The
dimensionless form of plane geometry is SðxÞ ¼ a sin2ðpxÞ,
where a is wavy amplitude–wavelength ratio. As for envi-
ronment parameter, polystyrene latex (PSL) aerosol flow
experiment (Ye et al. [4]) in a typical clean room is referred,
in the experiment, it is considered that gas which tempera-
ture is 300 K, Prandtl number is 0.72 and carries particles
of qp = 1027 kg m�3 passes through a wafer of 10 cm in
diameter at a speed w1 = 30 cm s�1. In the article, Eq.
(16) is used to calculate the corresponding flow strength
k = 3.82 s�1. The comparison between this result and that
obtained from Ye et al. [4] is shown in Fig. 3, from which
we can see the data obtained in this article tally with the
experimental data.

Fig. 4 is the distribution of local deposition velocity
along wavy surface under different wavy amplitude–wave-
length ratio. Figs. 5 and 6 are the distribution schematic
diagrams of flow velocity field, temperature field and parti-
cle concentration field when the wavy amplitude–
wavelength ratio is 0.02. From Fig. 4, we can see that on
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Fig. 5. Distribution of velocity of dimensionless flow field f 0 and
temperature h when wavy amplitude–wavelength ratio is 0.02: (a)
distribution of velocity field and (b) distribution of temperature field.
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Fig. 6. Distribution of dimensionless particle concentration when wavy
amplitude–wavelength ratio is 0.02 and DT = 0: (a) dp = 0.01 lm and (b)
dp = 10 lm.
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a flat plate (i.e. a = 0), the local deposition velocity for par-
ticles of various diameters is a constant, while on a wavy
plate, it shows as expected the frequency of variation is
almost same as that of deposition surface geometry, its var-
iation amplitude increases with the increase of the wavy
amplitude–wavelength ratio. Notably, in Figs. 4 and 6a,
we found when particle diameter is 0.01 or 0.1 lm, their
variation amplitude increases with the increase of radius,
that is obviously different from the result for the particles
which diameter is between 1 lm and 10 lm. It can be
explained as when particle diameter is small, the particle
inertia is small, and convection and diffusion are the dom-
inant deposition mechanism, therefore, in Figs. 6a and 5a,
the distribution of particle concentration and flow velocity
shows an increasing trend of variation amplitude with the
increase of radius, that is the result of affected diffusion
effect by the flow field. On the other hand, when the particle
diameter is more than 1 lm, inertia effect obviously
replaces diffusion effect and the deposition is no longer
affected by flow velocity, therefore, in Fig. 6b, the variation
amplitude of particle concentration does not increase with
the increase of radius.

Fig. 7 compares the distributions of local deposition
velocity of wavy plate and flat plate against radius under
various temperature difference between wall surface and
ambient when the particle diameter dp = 0.1 lm, from
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which we can see when the wall surface is colder than ambi-
ent (i.e. DT < 0), the local deposition velocity increases,
resulting from the accelerated deposition of aerosol parti-
cles onto the wall surface under the influence of thermo-
phoresis. If consulting Fig. 8a in the meantime, we can
more clearly see that the universal existence of thermo-
phoresis in the heat boundary layer not only causes the
dimensionless particle concentration near concentration
boundary layer slightly less than 1, but also leads to a sharp
change of particle concentration in area very near the wall
surface as a result of thinner concentration boundary layer.
Contrarily, when the wall surface is hotter than the ambi-
ent (i.e. DT > 0), the aerosol particles will be driven away
from the wall surface, resulting in decreased local deposi-
tion velocity. Moreover, when the effect of thermophoresis
featuring hot wall surface expelling particles away from it is
bigger than the effects of Brown diffusion and inertia, it
may even result in an area near the plate surface which par-
ticle concentration is approximately zero as shown in
Fig. 8b. Besides, in Fig. 7, no matter whether the deposi-
tion surface is cold or hot wall surface, the local deposition
velocity of wavy surface presents a periodical change same
as that of wavy surface, and its variation amplitude consid-
erably increases with the increase of radius, it can be
explained as the effects of diffusion and thermophoresis
outshine inertia effect and the deposition effect is deeply
affected by flow field and temperature field. Therefore,
the concentration distribution shown in Fig. 8 is same as
the distribution of velocity field and temperature field
shown in Fig. 5, i.e. their variation amplitudes all become
increasingly obvious with the increase of radius.

In order to research into the impact of wavy plate on the
total deposition velocity, Figs. 9 and 10 show the distribu-
tion of mean local deposition velocity along wavy surface.
As mean deposition velocity is the average value of the
local deposition velocity integrated along wavy surface, it
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can be seen that under the integral effect, the variation of
mean deposition velocity in the center of the plate is most
remarkable. Noticeably, in Figs. 9 and 10, only when the
particle diameter is 1 lm and the temperature of the wall
surface is equal to that of ambient (DT = 0), the variation
of mean deposition velocity becomes less remarkable
against the radius increase. In other cases, it maintains
basically unchanged amplitude as the radius increases.
When inertia is the dominant deposition mechanism (for
instance: when dp = 1 lm and DT = 0), with the increase
of radius, the mean deposition velocity is approximate to
that of flat surface. On the other hand, when diffusion
and thermophoretic effects outshine inertia effect, it
becomes slightly less than that of flat plate and shows
approximately same variation amplitude.
5. Conclusions

This article discussed from an approach of mathematic
theory how the tiny extruded and depressed displacement
on a wafer affect deposition effect. Through comparison,
it is found that numerical result surprisingly tallies with
the experimental result for flat wafer, indicating this article
result can be effectively applied to the analysis of emulated
flat plate and surface with tiny undulations. From the
numerical result, we can see that the local deposition veloc-
ity is obviously controlled by surface geometry, showing
same distribution of frequency as that of surface geometry.
Its amplitude is in direct proportion to the amplitude of
wavy surface, and when inertia effect is less than diffusion
and thermophoretic effects, its amplitude increases with
the increase of radius. From a general point of view, the
mean deposition effect of wavy plate is slightly less than
that of flat wafer, showing that although, with a same pro-
jected area, the deposition area of wavy surface is more
than the deposition area of flat plate and the extruded area
on wavy surface helps increase deposition effect, the depo-
sition effect of wavy surface near depressed area is less than
that of flat plate. That means the tiny electronic compo-
nents or displacement on deposition surface can be ignored
in engineering application if only the total deposition effect
is mattered.
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